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Abstract 

 
Advances in deep learning technology have enabled the generation of more realistic deepfakes, 
which not only endanger individuals’ identities but also exploit vulnerabilities in face 
recognition systems. The majority of existing deepfake detection methods have primarily 
focused on RGB-based analysis, offering unreliable performance in terms of detection 
accuracy and time. To address the issue, a grayscale-based deepfake detection method has 
recently been proposed. This method significantly reduces detection time while providing 
comparable accuracy to RGB-based methods. However, despite its significant effectiveness, 
the “key components” that directly affect the performance of grayscale-based deepfake 
detection have not been systematically analyzed. In this paper, we target three key components: 
RGB-to-grayscale conversion method, brightness level in grayscale, and resolution level in 
grayscale. To analyze their impacts on the performance of grayscale-based deepfake detection, 
we conducted comprehensive evaluations, including component-wise analysis and 
comparative analysis using real-world datasets. For each key component, we quantitatively 
analyzed its characteristics’ performance and identified differences between them. Moreover, 
we successfully verified the effectiveness of an optimal combination of the key components 
by comparing it with existing deepfake detection methods. 
 
 
Keywords: biometrics, presentation attack detection, deepfake, face recognition, image 
classification, image fusion, image processing  
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 1. Introduction  

Recent advances in deep learning technology have enabled the generation of more realistic 
deepfakes, which can be used for malicious purposes such as identity theft [1, 2]. Additionally, 
deepfakes can cause various threats, such as the dissemination of fake information and 
manipulation of public opinion, but also exploiting the vulnerabilities of face recognition 
systems [3]. To counteract the threats, a number of deepfake detection methods have been 
proposed, with the majority of them focusing on RGB-based video analysis [4–8]. In particular, 
RGB has been commonly used in deepfake detection because it is considered to provide richer 
information compared to other color spaces such as grayscale, HSV, and YCbCr [9, 10]. 
However, the RGB-based deepfake detection method still provides unreliable performance in 
terms of detection accuracy and time [11–14]. Hence, deepfake detection methods using 
different color spaces have recently been proposed [15, 16], and it has been noted that, in 
particular, grayscale-based deepfake detection significantly reduces detection time while 
providing comparable detection accuracy to RGB-based deepfake detection [14, 17]. 

 

 
Fig. 1. Differences in grayscale images by key components: (a) RGB-to-grayscale conversion,  

(b) brightness level, and (c) resolution level 
 

Despite its significant effectiveness, the absence of a systematic analysis on the “key 
components” that directly impact grayscale-based deepfake detection poses a challenge, 
contributing to a stagnation in enhancing its performance. For example, in grayscale-based 
analysis, components such as color contrast, brightness, and resolution can directly affect the 
performance of deepfake detection [18, 19]. Fig. 1 demonstrates the differences between 
grayscale images by each component in grayscale-based analysis. To implement a robust 
grayscale-based deepfake detection system, a systematic examination of the key components 
that directly influence its performance is required. Therefore, our goal in this paper is to 
identify these key components, examine their impacts, and configure their optimal 
combination in grayscale-based deepfake detection. 

In this paper, we identified the key components, and analyzed their impact on the 
performance of grayscale-based deepfake detection through comprehensive evaluations using 
real-world datasets (=Component-wise Analysis). The key components targeted in this paper 
are as follows: (1) RGB-to-grayscale conversion method, (2) brightness level in grayscale, and 
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(3) resolution level in grayscale. To analyze the impact of each key component, we used 
popular open datasets, Celeb-DF [22], FaceForensics++ (FF++) [21], and DeepFake-TIMIT 
(DF-TIMIT) [20], and employed six evaluation metrics, AUROC, confusion matrix (accuracy, 
precision, recall, and F1-score), and detection time. Additionally, based on the analysis results, 
we evaluated the effectiveness of an optimal combination of the key components and verified 
that it provided superior performance compared to existing deepfake detection methods 
(=Comparative Analysis). The contributions of this paper are as follows: 

• Identification of key components that affect grayscale-based deepfake detection.  
• Evaluation of each component’s impact on deepfake detection.  
• Design of robust grayscale-based deepfake detection with an optimal combination of key 

components.  
• Comprehensive evaluation via prototype implementation and real-world datasets. 
This paper is organized as follows. Section 2 describes related work, and Section 3 

demonstrates our approach. Our experimental results are presented in Section 4, and discussion 
is included in Section 5. Finally, the conclusion and future works are presented in Section 6. 

2. Related Work 

2.1 Deepfake Detection 
Various detection methods using neural networks have been proposed to discriminate against 
sophisticated deepfakes [4–8]. Ramachandran et al. assessed the effectiveness of deep face 
recognition trained using a variety of loss functions, in identifying deepfakes [23]. Kim et al. 
proposed a feature representation transfer adaptation learning framework employing a 
knowledge distillation paradigm and representation learning for quick adaptation to new types 
of deepfakes [4]. Ismail et al. proposed a deepfake detection method employing the YOLO 
face detector, convolutional neural network (CNN) model, and extreme gradient boosting 
classifier [5]. Wodajo et al. designed a convolutional vision transformer that combined a vision 
transformer with a CNN model for extracting facial features [6]. Liu et al. proposed a 
lightweight 3D CNN framework fusing the spatial feature in the time dimension, which detects 
deepfakes with a small number of parameters [7]. Xu et al. proposed an ensemble detection 
method that employs the contrasts between unmanipulated and manipulated images for 
generalizable performance on unseen data [8]. Aghasanli et al. proposed a deepfake detection 
method that combines the vision transformer with various classifiers [24]. Wang et al. 
introduced a deepfake detection model based on noise, which extracts noise features from both 
the face and background, calculating their interaction [25]. Despite the various approaches 
proposed, existing deepfake detection methods still offer unreliable performance in terms of 
detection accuracy and time [11–14]. In addition, despite the potential of different color spaces, 
existing deepfake detection methods have mainly focused on RGB-based analysis [22, 21, 26, 
27]. 

2.2 Grayscale Conversion 
In the field of image analysis, the grayscale channel has been widely used for the extraction 
of image features and the evaluation of image quality [28]. To support this, several techniques 
for converting RGB to grayscale have been proposed [18, 29–31]. Intensity is the simplest 
conversion method that uses the arithmetic mean of RGB channels [18, 29]. Luma, a popular 
conversion method based on the YIQ color model, is widely used in image processing 
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Fig. 2. An overview diagram of the proposed method 

 
mechanisms supporting contrast adjustment [29, 32]. Luminance, a conversion method based 
on OpenCV, is one of the standard algorithms for image processing software such as GIMP 
[18, 33]. Ambalathankandy et al. proposed an O(1) decolorization technique, which can 
convert RGB-to-grayscale at high speed using the difference in color temperature [30]. 
Paramasivam et al. proposed a color-invariant conversion method employing multiple 
regression to provide adaptive weights depending on the contribution of each channel [31]. 
According to prior studies, different RGB-to-grayscale conversion techniques produce varying 
degrees of brightness and color contrast preservation [18]. 

3. Our Approach 
In this research, we identified the key components of grayscale-based deepfake detection, and 
analyzed the impact of each component on deepfake detection performance. Based on the 
analysis results, we constructed an optimal combination of key components and evaluated its 
performance by comparing it with existing deepfake detection methods. 

As shown in Fig. 2, our approach comprises four main steps: (Step 1 - Key component 
identification): We identified the key components directly affecting the performance of 
grayscale-based deepfake detection; (Step 2 - Experimental configuration): We selected target 
datasets and deep learning (DL) model architecture for experimental analysis; (Step 3 - Dataset 
preprocessing): We performed dataset preprocessing and RGB-to-grayscale conversion based 
on each key component; (Step 4 - Experimental analysis): We performed two different types 
of analysis, component-wise and comparative. The component-wise analysis examines each 
component’s impact on the performance of deepfake detection. The comparative analysis 
evaluates the optimal combination of the key components by comparing it with the existing 
deepfake detection solutions. The followings are detailed descriptions of each step. 

3.1 Step 1: Key Component Identification 
In this step, we identified the key components that can directly affect the performance of 
grayscale-based deepfake detection, along with their respective hyperparameters as variables. 
Grayscale-based deepfake detection involves converting RGB to grayscale during 
preprocessing, which may potentially distort crucial features of the original video depending 
on components such as conversion methods, brightness, and resolution. Therefore, it is 
essential to identify those key components that directly impact effectiveness of deepfake 
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Table 1. The formulas of RGB-to-grayscale conversion methods 
Methods Conversion Formula 

Intensity [18] ( R + G + B ) / 3 
Luma [29] 0.299 × R + 0.587 × G + 0.114 × B 

Luminance [18] 0.3 × R + 0.59 × G + 0.11 × B 
*R: Red channel, G: Green channel, B: Blue channel 

 
detection in grayscale-based methods. This enables the preservation of crucial features within 
the original video, thereby enhancing detection performance and aiding in the development of 
grayscale-based deepfake detection algorithms. Previous studies have demonstrated that the 
choice of RGB-to-grayscale conversion algorithm has a significant impact on image 
recognition performance in grayscale channels, making it a crucial component for grayscale-
based deepfake detection [18]. Moreover, RGB-to-grayscale conversion is a lossy operation 
that may cause brightness degradation, leading to a loss of important information. Therefore, 
preserving at least the brightness feature of the original images is crucial in the RGB-to-
grayscale conversion, making the brightness level another key component of grayscale-based 
deepfake detection [19]. In addition, previous research has shown that even low-resolution 
grayscale images can provide sufficient information for saliency detection, comparable to 
high-resolution RGB images [19]. Hence, the resolution level of a grayscale image is also a 
key component of grayscale-based deepfake detection. As a result, we identified the key 
components as follows: (1) RGB-to-grayscale conversion method, (2) brightness level in 
grayscale, and (3) resolution level in grayscale. Note that other factors, such as contrast, 
saturation, noise, and shadows, may potentially impact the effectiveness of deepfake detection. 
However, in this study, to identify the key components in grayscale-based deepfake detection, 
we systematically analyzed existing studies and considered the other factors as out of scope. 
Hence, in our experiments, we maintained them in their original state without any 
manipulation. The detailed description of each key component is as follows. 

3.1.1 RGB-to-grayscale Conversion Method 
We examined the RGB-to-grayscale conversion methods proposed thus far, along with their 
corresponding commercial applications, and selected the three most widely employed 
variables as our primary targets [18, 29–31, 34–38]: Intensity [18], Luma [29], and Luminance 
[18]. The conversion formulas for each method are shown in Table 1. The weights in each 
formula indicate the degree of contribution of each channel (i.e., red, green, and blue) to the 
grayscale channel to be converted [18]. The red, green, and blue values of each pixel are 
multiplied by the weights to determine a resultant value ranging from 0 to 255. As shown in 
Fig. 3, the contrast and brightness levels of the grayscale frames can appear differently because 
of the different weights in each conversion method.  

 
Fig. 3. An example of differences between RGB-to-grayscale conversion methods (Intensity, Luma, 

and Luminance) 
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3.1.2 Brightness Level in Grayscale 
Depending on the brightness, highlighted areas, shadow amounts, and contrast can be different 
in the same frames [18, 29]. The brightness in the grayscale channel ranges from 0 to 255, 
typically scaled in 11 levels from 0 (=black) to 10 (=white) [39]. To accurately verify the 
impact of brightness differences on the deepfake detection performance, we divided the 
brightness levels in this study into a total of three variables (B1: 0 to 85.32, B2: 85.33 to 170.65, 
and B3: 170.66 to 255). Out of the 11 levels, excluding levels 0 and 10 where facial features 
are difficult to distinguish, we categorized the remaining nine levels into three distinct levels 
based on their respective median values as references. Fig. 4 illustrates the differences between 
grayscale frames caused by different brightness levels (i.e., B1-B3). 

 
Fig. 4. An example of differences between brightness levels  
(B1: 0 to 85.32, B2: 85.33 to 170.65, and B3: 170.66 to 255) 

 

3.1.3 Resolution Level in Grayscale 
The resolution refers to the degree of detail that can be depicted in the frame [40]. Resolution 
has a direct impact on deepfake detection performance because it determines how realistically 
synthetic areas appear in deepfakes [19, 20, 41]. In this study, we divided the resolution levels 
into a total of three variables (R1: 64×64 pixels, R2: 128×128 pixels, and R3: 256×256 pixels), 
which were based on the resolution levels of the images comprising the most widely used 
deepfake datasets [20–22, 42–46]. Fig. 5 illustrates the differences between grayscale frames 
caused by different resolution levels (i.e., R1-R3). 
 

 
Fig. 5. An example of differences between resolution levels  

(R1: 64×64 pixels, R2: 128×128 pixels, and R3: 256×256 pixels) 
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3.2 Step 2: Experimental Configuration 
In this step, we selected target datasets and DL model architecture for experimental analysis. 
 

Table 2. The number of Celeb-DF dataset for component-wise analysis:  
AUROC, CM, and Detection Time 

 Dataset 
1)AUROC, 2)CM 3)Detection Time 

Real Fake Real Fake 
Training 412 5,299 - - 
Testing 178 340 82 40 
Total 590 5,639 82 40 

1) AUROC: Area Under ROC Curve  
2) CM: Confusion Matrix  
3) Detection Time: Preprocessing time + Inference time (in seconds) 

 
Table 3. The number of datasets (Celeb-DF, FF++, and DF-TIMIT) for comparative analysis: 

AUROC and CM 

 Dataset Celeb-DF FF++ DF-TIMIT 
Real Fake Real Fake Real Fake 

Training 412 5,299 700 700 224 224 
Testing 178 340 300 300 96 96 
Total 590 5,639 1,000 1,000 320 320 

 
Table 4. The number of datasets (Celeb-DF, FF++, and DF-TIMIT) for comparative analysis: 

Detection Time 

 Dataset Celeb-DF FF++ DF-TIMIT 
Real Fake Real Fake Real Fake 

Training - - - - - - 
Testing 82 40 38 70 33 38 
Total 82 40 38 70 33 38 

 
Table 2, Table 3, and Table 4 present the number of datasets for component-wise analysis 
and comparative analysis, respectively. Among the recently published deepfake datasets, we 
selected the top three datasets based on their citation counts (i.e., Celeb-DF [22], FF++ [21], 
and DF-TIMIT [20]). Celeb-DF comprises 5,639 fake videos generated by using the author’s 
synthesis algorithm and 590 real videos collected from YouTube [22]. FF++ comprises 1,000 
fake videos generated by using FaceSwap [47] and 1,000 real videos collected from YouTube 
synthesis algorithm and 590 real videos collected from YouTube [21]. Note that, to ensure an 
equal number of real and fake datasets within the FF++ dataset, we selected a subset (i.e., 
FaceSwap) from the complete fake dataset, following the setup of previous studies [22]. DF-
TIMIT comprises 320 fake videos generated by using faceswap-GAN [48] and 320 real videos 
collected from the VidTIMIT dataset [49]. In addition, to evaluate the detection time, which 
comprises both dataset preprocessing time and inference time, considering that the video 
lengths in each dataset vary, we identified the length that accounts for the largest proportion 
in each dataset. We then constructed the datasets for detection time analysis using fixed video 
lengths: Celeb-DF (10-second, 122 videos), FF++ (20-second, 108 videos), and DF-TIMIT 
(3-second, 71 videos). For each analysis, different datasets were used. For component-wise 
analysis, we used the Celeb-DF dataset. For comparative analysis, we used Celeb-DF, FF++, 
and DF-TIMIT. The training time for those datasets ranged from 14.7 minutes to 499.1 minutes 
for 20 epochs. 
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 As the target DL model architecture, we selected VGG16 [50], which is one of the most 
commonly used architectures in deepfake detection research [51–54]. Previous studies 
comparing the performance (i.e., accuracy and time) of various architectures in grayscale-
based deepfake detection have demonstrated that VGG16 outperforms other architectures 
including XceptionNet, InceptionResNetV2, ResNet152, DenseNet121, and AlexNet [14, 17, 
55]. 
 

 
Fig. 6. An overview of dataset preprocessing: (a) Splitting datasets, (b) Slicing videos, (c) Cropping 

facial regions, and (d) Converting by key components 

3.3 Step 3: Dataset Preprocessing 
In this step, we performed preprocessing on the target dataset. Fig. 6 shows four main steps 
for dataset preprocessing: (a) Splitting datasets: We split the target dataset into training and 
testing sub-datasets. We split the Celeb-DF dataset based on a type list provided by the dataset 
authors: Real—70% for training and 30% for testing, and Fake—94% for training and 6% for 
testing. Meanwhile, we split the FF++ and DF-TIMIT datasets into 70%:30% (training:testing) 
ratios, respectively. (b) Slicing videos: To appropriately capture any visual artifacts that may 
appear during the constant movement of an object, we sliced each video into 50 frames, the 
commonly used number of frames in video analysis [56–59]. (c) Cropping facial regions: Since 
facial regions are key subjects for deepfake generation, we extracted the facial region from 
each frame. Each facial region was cropped to a fixed aspect ratio of 1:1 and resized to our 
defined resolution levels R1, R2, and R3 [60, 61]. (d) Converting by key components: We 
finally converted each facial region based on the key components. For the RGB-to-grayscale 
conversion method, we converted each facial region using Intensity, Luma, and Luminance, 
respectively. For the brightness level in grayscale, we converted the brightness of each 
converted facial region using our defined brightness levels, B1, B2, and B3. 
 

3.4 Step 4: Experimental Analysis 
In this step, we performed two experimental analysis: component-wise analyses and 
comparative analysis. 

For component-wise analysis, we compared the deepfake detection performances of 
different RGB-to-grayscale methods, brightness levels, and resolution levels. We trained 
separate VGG16 models using each preprocessed dataset and assessed their performance using 
the following evaluation metrics: AUROC, confusion matrix (accuracy, precision, recall, and 
F1-score), and detection time. Since grayscale-based deepfake detection inherently includes 
both grayscale conversion and inference, in this study, the detection time encompasses both 
preprocessing time and inference time for a single video. Consequently, for each key 
component, we quantitatively analyzed the performance of its variables and identified the 
differences between them. 
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Table 5. The results of component-wise analysis on RGB-to-grayscale conversion method 

Conversion 
Method 

AUROC 
(%) 

Confusion Matrix Detection Time 
(seconds) Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
Intensity 97.88 88.56 99.22 67.30 79.97 9.34 
Luma 98.31 93.14 96.82 82.83 89.20 9.30 

Luminance 98.32 92.46 98.04 79.65 87.87 9.28 

 
Fig. 7. The results of component-wise analysis on RGB-to-grayscale conversion method:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time 
 
For comparative analysis, we constructed an optimal combination of key components and 
compared its performance with existing deepfake detection solutions. The optimal 
combination was determined by component-wise analysis and included the best performing 
variables of each key component. We trained a VGG16 model using the preprocessed datasets 
and assessed its performance against those of existing solutions. To select relevant existing 
solutions, we conducted a systematic literature search of publications on deepfake detection 
since 2019 and thoroughly examined studies with a particular focus on those from the past 
three years [22, 44, 62–76]. As a result, we selected three solutions that have been most 
commonly used as comparative models: Xception [55], MesoNet [77], and FWA [78]. We 
compared their performances using the same metrics (i.e., AUROC, confusion matrix, and 
detection time). Note that, for existing solutions, we used pre- trained models essentially 
provided by the authors, and executed them in compliance with the conditions and parameters 
specified by the authors. Note that our experiments were performed using 2 GPUs (NVIDIA 
GeForce RTX 3090), Python 3.9.7, and TensorFlow 2.7.0 (optimizer=Adam, learning rate=1e-
55, batch size=64 batch, and epochs=20). 

4. Experimental Results 

4.1 Component-wise Analysis 
In this section, we demonstrate the results of the component-wise analysis. With a Celeb-DF 
dataset and VGG16 model architecture, we analyzed deepfake detection performance using 
multiple evaluation metrics, including AUROC, confusion matrix, and detection time. The 
detection time was calculated by averaging the time elapsed to analyze a single video of a 
specific length. Component-wise analysis was based on an ablation experiment to identify the 
impact of each key component's variable on deepfake detection. We measured the performance 
by fixing a control variable and varying other variables of each component. With reference to 
our preliminary study, the control variables for each key component were set as follows: RGB-
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to-grayscale conversion method=Luma; brightness level=B2; and resolution level=R3. Note 
that, in the component-wise analysis, the results were averaged after being measured three 
times due to the potential variation in the performance of the target model with each training 
instance. 

4.1.1 RGB-to-grayscale Conversion Method 
The analysis results on RGB-to-grayscale conversion methods are shown in Table 5 and Fig. 
7. Specifically, AUROC, confusion matrix (accuracy, precision, recall, and F1-score), and 

 
Table 6. The results of component-wise analysis on brightness level 

Brightness 
Level  

AUROC 
(%) 

Confusion Matrix Detection Time 
(seconds) Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
B1 95.41 86.38 97.92 61.70 75.64 9.30 
B2 98.31 93.14 96.82 82.83 89.20 9.30 
B3 96.58 88.14 98.01 66.92 79.33 9.30 

 
Fig. 8. The results of component-wise analysis on brightness level:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time 
 
detection time of each RGB-to-grayscale conversion method are shown in Fig. 7 (a), (b), and 
(c), respectively. For AUROC, the performance of Intensity (97.88%), Luma (98.31%), and 
Luminance (98.32%) was comparable, with Luminance slightly outperforming the others. For 
confusion matrix, Luma outperformed the others: For accuracy, Intensity (88.56%), Luma 
(93.14%), and Luminance (92.46%); For precision, Intensity (99.22%), Luma (96.82%), and 
Luminance (98.04%); For recall, Intensity (67.30%), Luma (82.83%), and Luminance 
(79.65%); For F1-score, Intensity (79.97%), Luma (89.20%), and Luminance (87.87%). For 
the detection time on 10-second videos, Luma (9.30s) and Luminance (9.28s) required less 
time overall than Intensity (9.34s). Overall, Luma showed the most accurate deepfake 
detection among the three conversion methods, while Luminance required the shortest 
detection time.  

4.1.2 Brightness Level in Grayscale Channel 
The analysis results on brightness levels are shown in Table 6 and Fig. 8. Specifically, 
AUROC, confusion matrix (accuracy, precision, recall, and F1-score), and detection time of 
each brightness level are shown in Fig. 8 (a), (b), and (c), respectively. For AUROC, B2 
outperformed the others: B1 (95.41%), B2 (98.31%), and B3 (96.58%). For confusion matrix, 
B2 outperformed the others: For accuracy, B1 (86.38%), B2 (93.14%), and B3 (88.14%); For 
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precision, B1 (97.92%), B2 (96.82%), and B3 (98.01%); For recall, B1 (61.70%), B2 (82.83%), 
and B3 (66.92%); For F1-score, B1 (75.64%), B2 (89.20%), and B3 (79.33%). For the 
detection time on 10-second videos, the performance of B1, B2, and B3 were identical (9.30s). 
Overall, B2 showed the most accurate deepfake detection among the three brightness levels, 
with comparable detection time between them. 

4.1.3 Resolution Level in Grayscale Channel 
The analysis results on resolution levels are shown in Table 7 and Fig. 9. Specifically, 

 
Table 7. The results of component-wise analysis on resolution level 

Resolution 
Level 

AUROC 
(%) 

Confusion Matrix Detection Time 
(seconds) Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
R1 93.81 82.47 98.22 49.91 66.17 9.21 
R2 96.62 84.47 99.26 55.25 70.71 9.25 
R3 98.31 93.14 96.82 82.83 89.20 9.30 

 
Fig. 9. The results of component-wise analysis on resolution level:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time 
 
AUROC, confusion matrix (accuracy, precision, recall, and F1-score), and detection time of 
each resolution level are shown in Fig. 9 (a), (b), and (c), respectively. For AUROC, R3 
outperformed the others: R1 (93.81%), R2 (96.62%), and R3 (98.31%). For confusion matrix, 
R3 outperformed the others: For accuracy, R1 (82.47%), R2 (84.47%), and R3 (93.14%); For 
precision, R1 (98.22%), R2 (99.26%), and R3 (96.82%); For recall, R1 (49.91%), R2 (55.25%), 
and R3 (82.83%); For F1-score, R1 (66.17%), R2 (70.71%), and R3 (89.20%). For the 
detection time on 10-second videos, R1 (9.21s) and R2 (9.25s) required less time overall than 
R3, which took the longest (9.30s). Overall, R3 showed the most accurate deepfake detection 
among the three resolution levels, while R1 required the shortest detection time. 

4.2 Comparative Analysis 
In this section, we demonstrate the results of the comparative analysis. First, we checked 
whether the combination of the identified key components is also globally optimal. We 
constructed all possible combinations based on the variables. With a Celeb-DF dataset and 
VGG16 model architecture, we analyzed deepfake detection performance using multiple 
evaluation metrics (i.e., AUROC, confusion matrix, and detection time), and identified the 
optimal combination (=OC) of key components. 
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Based on the OC, we trained a VGG16 model and compared its performance with existing 
solutions for deepfake detection (i.e., XceptionNet [55], Meso4 [77], and FWA [78]). We 
employed the same evaluation metrics as the component-wise analysis (i.e., AUROC, 
confusion matrix, and detection time), while employing different datasets (i.e., Celeb-DF, 
FF++, and DF-TIMIT). For each dataset, the detection time was calculated by averaging the 
detection time to analyze a single video of a specific length. Note that, in the comparative 
analysis, since we utilized pre-trained models provided by existing solutions, the best 
performance was measured instead of calculating the average. 

 

4.2.1 Combinational Analysis of Key Components 
Table 8. The results of combinational analysis of key components using Celeb-DF 

Combination AUROC 
(%) 

Confusion Matrix Detection 
Time 

(seconds) 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
Intensity / B1 / R1 94.50 80.22 99.55 42.62 59.69 9.27 
Intensity / B2 / R1 95.52 87.14 97.90 63.96 77.37 9.27 
Intensity / B3 / R1 93.45 85.57 95.75 60.71 74.30 9.27 
Intensity / B1 / R2 96.21 87.47 96.59 65.85 78.31 9.29 
Intensity / B2 / R2 97.28 90.63 97.60 74.55 84.53 9.29 
Intensity / B3 / R2 97.46 91.42 97.33 77.13 86.07 9.29 
Intensity / B1 / R3 96.89 89.93 97.18 72.80 83.18 9.34 
Intensity / B2 / R3 97.88 88.56 99.22 67.30 79.97 9.34 
Intensity / B3 / R3 96.55 86.29 99.34 60.51 75.12 9.34 

Luma / B1 / R1 92.32 81.13 97.76 46.16 62.61 9.23 
Luma / B2 / R1 93.81 82.47 98.22 49.91 66.17 9.21 
Luma / B3 / R1 89.99 81.02 96.30 46.57 62.77 9.22 
Luma / B1 / R2 95.59 83.70 99.02 53.12 69.07 9.25 
Luma / B2 / R2 96.62 84.47 99.26 55.25 70.71 9.26 
Luma / B3 / R2 94.94 82.87 99.09 50.63 66.99 9.25 
Luma / B1 / R3 95.41 86.38 97.92 61.70 75.64 9.30 
Luma / B2 / R3 98.31 93.14 96.82 82.83 89.20 9.30 
Luma / B3 / R3 96.58 88.14 98.01 66.92 79.33 9.30 

Luminance / B1 / R1 91.25 81.10 95.97 46.98 63.05 9.20 
Luminance/ B2 / R1 92.27 82.04 97.67 48.94 65.07 9.21 
Luminance / B3 / R1 88.59 77.97 97.86 36.70 53.34 9.21 
Luminance / B1 / R2 95.60 86.31 96.53 62.57 75.51 9.23 
Luminance / B2 / R2 97.62 88.07 98.99 66.04 78.94 9.23 
Luminance / B3 / R2 94.68 83.70 98.44 53.43 69.17 9.23 
Luminance/ B1 / R3 96.94 87.77 98.42 65.45 78.62 9.27 
Luminance / B2 / R3 98.32 92.46 98.04 79.65 87.87 9.28 
Luminance/ B3 / R3 95.92 85.31 98.11 58.49 72.94 9.28 

 
To verify whether the combination of the identified key components is also globally optimal, 
we constructed all possible combinations of variables (27 combinations in total) and 
preprocessed the Celeb-DF dataset by applying each combination. We then trained them on 
VGG16 models and measured their performance. Each metric was measured three times and 
averaged. As shown in Table 8, for AUROC, the combination of [Luminance / B2 / R3] 
(98.32%) and [Luma / B2/ R3] (98.31%) outperformed the others. For confusion matrix, 
[Luma / B2 / R3] outperformed the others overall: For accuracy, the combination of [Luma / 
B2 / R3] (93.14%) outperformed the others (77.97%-92.46%); For precision, the combination 
of [Intensity / B1 / R1] (99.55%) outperformed the others (95.75%-99.34%); For recall, the 
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combination of [Luma / B2 / R3] (82.83%) outperformed the others (36.70%-79.65%); For 
F1-score, the combination of [Luma / B2 / R3] (89.20%) outperformed the others (53.34%-
87.87%). For the detection time on 10-second videos, the combination of [Luminance / B1 / 
R1] (9.20s) required less time overall than the others (9.21s-9.34s). Overall, the OC includes 
RGB-to-grayscale conversion method=Luma, brightness level=B2, and resolution level=R3, 
all of which also provided superior performance in component-wise analysis. This confirms 
that the combination of these key components is indeed globally optimal. 
 

4.2.2 Comparative Analysis: Celeb-DF 
The results of comparative analysis using Celeb-DF dataset are shown in Table 9, and Fig. 10. 
Specifically, Fig. 10 (a), (b), and (c) show AUROC, confusion matrix, and detection time of 
each solution, respectively. For AUROC, OC outperformed the others: XceptionNet (48.79%), Meso4 
(49.27%), FWA (37.27%), and OC (99.75%). For confusion matrix, OC outperformed the others: For 
accuracy, XceptionNet (36.29%), Meso4 (38.03%), FWA (50.97%), and OC (98.06%); For precision, 
XceptionNet (60.00%), Meso4 (33.71%), FWA (23.24%), and OC (100.00%); For recall, XceptionNet 
(8.82%), Meso4 (83.15%), FWA (18.54%), and OC (94.38%); For F1-score, XceptionNet (15.38%), 
Meso4 (47.97%), FWA (20.63%), and OC (97.10%). 
 

Table 9. The results of comparative analysis using Celeb-DF 

Solution AUROC 
(%) 

Confusion Matrix Detection 
Time 

(seconds) 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
XceptionNet 48.79 36.29 60.00 8.82 15.38 43.72 

Meso4 49.27 38.03 33.71 83.15 47.97 6.85 
FWA 37.27 50.97 23.24 18.54 20.63 28.90 
OC 99.75 98.06 100.00 94.38 97.10 9.26 

 
Fig. 10. The results of comparative analysis using Celeb-DF:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time  
 

4.2.3 Comparative Analysis: FF++ 
The results of comparative analysis using FF++ dataset are shown in Table 10, and Fig. 11. 
Specifically, Fig. 11 (a), (b), and (c) show AUROC, confusion matrix, and detection time of 
each solution, respectively. For AUROC, OC outperformed the others: XceptionNet (57.00%), 
Meso4 (39.78%), FWA (33.93%), and OC (99.76%). For confusion matrix, OC outperformed 
the others: For accuracy, XceptionNet (57.00%), Meso4 (49.17%), FWA (37.67%), and OC 
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(97.50%); For precision, XceptionNet (92.00%), Meso4 (49.58%), FWA (25.66%), and OC 
(97.34%); For recall, XceptionNet (15.33%), Meso4 (98.00%), FWA (13.00%), and OC 
(97.66%); For F1-score, XceptionNet (26.29%), Meso4 (65.85%), FWA (17.26%), and OC 
(97.50%). 

4.2.4 Comparative Analysis: DF-TIMIT 
The results of comparative analysis using DF-TIMIT dataset are shown in Table 11, and Fig. 
12. Specifically, Fig. 12 (a), (b), and (c) show AUROC, confusion matrix, and detection time 
of each solution, respectively. For AUROC, OC outperformed the others: XceptionNet 
(50.52%), Meso4 (50.80%), FWA (28.59%), and OC (99.92%). For confusion matrix, OC 
outperformed the others: For accuracy, XceptionNet (50.52%), Meso4 (50.00%), FWA 
(37.50%), and OC (98.43%); For precision, XceptionNet (100.00%), Meso4 (50.00%), FWA 
(40.16%), and OC (100.00%); For recall, XceptionNet (1.04%), Meso4 (94.79%), FWA 
(51.04%), and OC (96.87%); For F1-score, XceptionNet (2.06%), Meso4 (65.47%), FWA 
(44.95%), and OC (98.41%). 
 

Table 10. The results of comparative analysis using FF++ 

Solution AUROC 
(%) 

Confusion Matrix Detection 
Time 

(seconds) 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
XceptionNet 57.00 57.00 92.00 15.33 26.29 124.19 

Meso4 39.78 49.17 49.58 98.00 65.85 10.43 
FWA 33.93 37.67 25.66 13.00 17.26 52.54 
OC 99.76 97.50 97.34 97.66 97.50 34.73 

 

 
Fig. 11. The results of comparative analysis using FF++:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time 
 

Table 11. The results of comparative analysis using DF-TIMIT 

Solution AUROC 
(%) 

Confusion Matrix Detection 
Time 

(seconds) 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
XceptionNet 50.52 50.52 100.00 1.04 2.06 6.75 

Meso4 50.80 50.00 50.00 94.79 65.47 4.83 
FWA 28.59 37.50 40.16 51.04 44.95 23.27 
OC 99.92 98.43 100.00 96.87 98.41 5.58 
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Fig. 12. The results of comparative analysis using DF-TIMIT:  

(a) AUROC, (b) Confusion matrix, and (c) Detection time 
 
 

 
Fig. 13. The correlation between detection time and accuracy in the results of component-wise 

analysis 

5. Discussion 

5.1 Component-wise Analysis 
Based on the results of component-wise analysis, as shown in Fig. 13, we analyzed the 
correlations between the accuracy and detection time of each key component: (a) RGB-to-
grayscale conversion method; (b) brightness level; and (c) resolution level. Note that each 
point on the graph represents the comprehensive performance of each key component, and that 
the upper-left region indicates better performance. 

5.1.1 RGB-to-grayscale Conversion Method 
As shown in Fig. 13 (a), the accuracy of each RGB-to-grayscale conversion method was in 
the order of Luma, Luminance, and Intensity. While Luma and Luminance had a negligible 
difference (Luma-Luminance: 0.68%), Intensity and the others had relatively significant 
differences (Intensity-Luminance: 4.58% and Intensity-Luma: 3.90%). Multiple factors could 
have contributed to these results. When RGB channels are converted to grayscale, Intensity 
applies the same ratio to each channel (see Table 1). However, because each channel has a 
different spectral power, significant visual features may be lost during Intensity’s conversion 
[79]. Moreover, in grayscale image recognition, Luma, which is based on non-linear channels 
with gamma correction, usually outperforms purely linear methods such as Intensity and 
Luminance [18]. 
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Meanwhile, the detection time for each RGB-to-grayscale conversion method was in the 
order of Intensity, Luma, and Luminance, as shown in Fig. 13 (a). Although Luminance 
required the shortest detection time, all methods had negligible differences (Luminance-Luma: 
0.02s, Luminance-Intensity: 0.06s, and Luma-Intensity: 0.04s). RGB-to-Grayscale conversion 
methods are essentially the same operation with different weights. Although our experiments 
were conducted under strict constraints and conditions, we suspect that the slight difference in 
detection time may be attributed to uncontrollable external factors such as GPU operation. The 
results demonstrate that deepfake detection time is rarely impacted by the conversion method. 
Overall, based on the correlation between detection time and accuracy, Luma and Luminance 
were confirmed to be more effective than Intensity for detecting deepfakes. 

5.1.2 Brightness Level in Grayscale Channel 
As shown in Fig. 13 (b), the accuracy of each brightness level was in the order of B2, B3, and 
B1. While B2 and the others had significant differences (B2-B3: 5.00% and B2-B1: 6.76%), 

 
Fig. 14. The correlation between detection time and accuracy in the results of comparative analysis 

 
B3 and B1 had a relatively comparable difference (B3-B1: 1.76%). Multiple factors could 
have contributed to these results. In overly bright or dark lighting conditions, it is challenging 
to accurately detect an object due to a significant loss of information [80]. Low brightness, in 
particular, causes severe information loss due to infrequent features, affecting object detection 
[81]. Therefore, B2, a moderate brightness condition, showed significantly higher accuracy 
compared to extreme brightness conditions (i.e., B1 and B3). Moreover, since lower brightness 
offers more challenging conditions for object detection than higher brightness [82], B3 might 
show slightly higher accuracy than B1. 

Meanwhile, the detection time for each brightness level was identical at 9.30s, as shown in 
Fig. 13 (b). Different brightness levels also have same operation with different weights. 
Therefore, the results demonstrate that deepfake detection time is not impacted by the 
brightness level. Overall, based on the correlation between detection time and accuracy, B2 
was confirmed to be the most effective for detecting deepfakes. 

5.1.3 Resolution Level in Grayscale Channel 
As shown in Fig. 13 (c), the accuracy of each resolution level was in the order of R3, R2, and 
R1. While R3 and the others had significant differences (R3-R2: 8.67% and R3-R1: 10.67%), 
R2 and R1 had a relatively comparable difference (R2-R1: 2.00%). High-resolution images 
are beneficial for image classification, including deepfake detection, because they contain 
more details and geometric information than low-resolution images [41, 83]. Thus, R3, the 
highest resolution, showed significantly higher accuracy than the lower ones (i.e., R2 and R1). 
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Meanwhile, the detection time for each resolution level was in the order of R3, R2, and R1. 
While R3 and the others had relatively significant differences (R3-R2: 0.05s and R3-R1: 0.09s), 
R2 and R1 had a negligible difference (R2-R1: 0.04s). The results demonstrate that deepfake 
detection time can be fairly impacted by the resolution level. Overall, based on the correlation 
between detection time and accuracy, B3 was confirmed to be the most effective for detecting 
deepfakes. 

5.2 Comparative Analysis 
Based on the results of comparative analysis, as shown in Fig. 14, we analyzed the correlations 
between the accuracy and detection time of each solution on different datasets: (a) Celeb-DF, 
(b) FF++, and (c) DF-TIMIT. Note that each point on the graph represents the comprehensive 
performance of each key component, and that the upper-left region indicates better 
performance. 

As shown in Fig. 14 (a), the accuracy of each solution on the Celeb-DF dataset was in the 
order of OC, FWA, Meso4, and XceptionNet. On the other hand, both on the FF++ and DF- 
TIMIT datasets, the accuracy of each solution was in the order of OC, XceptionNet, Meso4, 
and FWA, as shown in Fig. 14 (b), and (c). Overall, OC and the others had significant 
differences (OC-XceptionNet: 50.06%, OC-Meso4: 52.26%, and OC-FWA: 55.95%). When 
generating a deepfake, a decrease in image resolution occurs mainly at the boundary of the 
region being manipulated due to expanding the size of the source facial region to the size of 
the target facial region for realistic manipulation [84, 85]. Grayscale-based analysis has an 
advantage over RGB-based analysis in analyzing image boundaries because it simplifies 
image complexity and reduces the computing costs [86]. Moreover, in object detection, 
previous studies have proven that grayscale-based analysis has consistently higher accuracy 
than RGB-based analysis [87]. As a result, OC, which comprises key components of grayscale-
based analysis, demonstrated noticeably superior accuracy when compared to the others. 

As shown in Fig. 14 (a) and (b), both on the Celeb-DF and FF++ dataset, the detection 
time of each solution was in the order of XceptionNet, FWA, OC, and Meso4. Meanwhile, the 
detection time of each solution on the DF-TIMIT dataset was in the order of FWA, 
XceptionNet, OC, and Meso4, as shown in Fig. 14 (c). Overall, Meso4 showed the shortest 
detection time, and the difference between Meso4 and OC was relatively small (Meso4-OC: 
9.15s), compared to Meso4 and the others (Meso4-FWA: 27.53s and Meso4-XceptionNet: 
50.85s). Moreover, the mean difference between Meso4 and OC on the Celeb-DF and DF-
TIMIT datasets was 1.58s, which is remarkably smaller than the others. In particular, since 
OC’s detection time was primarily consumed by the process of converting RGB-to-grayscale, 
optimizing the conversion mechanism is expected to reduce it. Overall, based on the 
correlation between detection time and accuracy, we confirmed that OC outperformed existing 
solutions as it provided superior accuracy while requiring a relatively short detection time. 
Additionally, we confirmed that OC provided generalized performance across different 
datasets (Celeb-DF: 98.06%, FF++: 97.50%, and DF-TIMIT: 98.43%). Considering that 
grayscale-based deepfake detection achieves comparable performance with limited 
information, the results imply that OC can effectively counter emerging deepfake generation 
methods or different attack scenarios. 

6. Conclusions and Future Works 
In this paper, we identified the key components that directly affect the performance of 
grayscale-based deepfake detection: (1) RGB-to-grayscale conversion method, (2) brightness 
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level in grayscale, and (3) resolution level in grayscale. To analyze their impacts on deepfake 
detection performance, we conducted comprehensive evaluations, including component-wise 
analysis and comparative analysis. The results of component-wise analysis confirmed that 
Luma (RGB-to-grayscale conversion method), B2 (brightness level–85.33 to 170.65), and R3 
(resolution level–256×256 pixels) showed superior performance in terms of accuracy and 
detection time, respectively. Additionally, the results of comparative analysis confirmed that 
our grayscale-based model, which is based on the optimal combination of the key components, 
outperformed other solutions in terms of detection accuracy while requiring a relatively short 
detection time. Our study successfully confirmed that the key components we identified 
directly affect the performance of grayscale-based deepfake detection, and that their optimal 
combination outperforms existing solutions. Our findings will enable a decrease in cases of 
identity theft caused by deepfakes and an enhancement in the promptness and accuracy of 
presentation attack detection in face recognition systems. 

In future work, we plan to improve the effectiveness of our optimal combination of key 
components by exploring and assessing additional potential factors that may influence the 
performance of grayscale-based deepfake detection. Moreover, we plan to conduct an 
extended analysis of emerging deepfake detection and generation approaches to validate the 
effectiveness and applicability of our optimal combination from a broader perspective. 
Furthermore, for further enhancement of detection accuracy, analyzing additional color spaces 
may prove beneficial, although this could potentially impose constraints in terms of speed. 
Therefore, we plan to explore methods that can effectively apply multiple color spaces in 
association while remaining applicable to real-time face recognition systems. 
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